Chapter 18

Urinary System Disorders
Urinary System: Review

- Removes metabolic wastes
- Removes hormones from the body
- Removes drugs other foreign material from body
- Regulates water, electrolyte, acid-base balance
- Secretes erythropoietin
- Activates vitamin D
- Regulate blood pressure through the renin-angiotensin-aldosterone system
Urinary System: Review (Cont.)

- Anatomy

 Kidneys
 ↓
 Ureters
 ↓
 Urinary bladder
 ↓
 Urethra
Gross Anatomy of the Urinary System
Anatomy of the Kidney

- Capsule (fibrous)
- Cortex
- Minor calyces
- Major calyces
- Fat
- Renal pelvis
- Medullary pyramid
- Medulla
- Renal papilla of pyramid
- Hilum
- Renal sinus
- Renal column
- Interlobular arteries
- Ureter

Kidney

- Nephrons—functional units of the kidneys
- Each kidney has over a million nephrons.
 - Renal corpuscles
 - Glomerulus
 - Bowman capsule
 - Renal tubules
 - Proximal convoluted tubules
 - Loop of Henle
 - Distal convoluted tubules
 - Collecting duct
Nephron

- Complete nephron
Formation of Urine

- **Filtration**
 - In renal corpuscles
 - Large volume of fluid passes from glomerular capillaries into the tubule (Bowman capsule)
 - Wastes, nutrients, electrolytes, other dissolved substances
 - Cells and protein remain in the blood.

- **Reabsorption**
 - Reabsorption of essential nutrients, water, and electrolytes into the peritubular capillaries
 - Control of pH and electrolytes
Reabsorption

- Transport mechanisms for reabsorption
 - Active transport
 - Co-transport
 - Osmosis—water

- Proximal convoluted tubules
 - Most of water reabsorption
 - Glucose reabsorption
 - Nutrients and electrolytes to maintain homeostasis
Schematic Illustration of Urine Formation

1. FILTRATION
 - WATER

2. REABSORPTION
 - GLUCOSE
 - AA
 - Na+
 - WATER
 - (Aldosterone effect)
 - Na+
 - Water (ADH effect)

3. REABSORPTION SECRETION
 - WATER
 - Na+
 - Cl–
 - H+
 - K+

KEY
- AA: Amino acids
- B–: Bicarbonate ions
- Cl–: Chloride ions
- H+: Hydrogen ions
- K+: Potassium ions
- Na+: Sodium ions

Hormones Involved in Reabsorption

- **Antidiuretic hormone (ADH)**
 - Secreted by the posterior pituitary
 - Reabsorption of water in distal convoluted tubules and collecting ducts

- **Aldosterone**
 - Secreted by adrenal cortex
 - Sodium reabsorption in exchange for potassium or hydrogen

- **Atrial natriuretic hormone**
 - Hormone from the heart
 - Reduces sodium and fluid reabsorption
Blood Flow through the Kidney

Specialized pattern:
Renal artery → interlobar artery → arcuate artery → interlobular artery → *afferent arteriole*
→ glomerular capillaries → *afferent arteriole* → peritubular capillaries → interlobular vein → arcuate vein → interlobar vein → renal vein
Glomerular Filtration Rate

- Afferent and efferent arterioles of the glomerulus
 - Autoregulation and hormones control pressure in the glomerular capillaries by:
 - Vasoconstriction of afferent arteriole
 - Decreased glomerular pressure—decreased filtrate
 - Dilation of afferent arteriole
 - Increased pressure in glomerulus—increased filtrate
 - Vasoconstriction of efferent arteriole
 - Increased pressure in glomerulus—increased filtrate
Control of Glomerular Filtration Rate

NORMAL FILTRATION

AFFERENT ARTERIOLE: DILATION

EFFERENT ARTERIOLE: CONstriction

AFFERENT ARTERIOLE: CONstriction
Glomerular Filtration Rate (Cont.)

Control of arteriolar constriction by three factors:

- **Autoregulation**
 - Local adjustment in diameter of arterioles
 - Made in response to changes in blood flow in kidneys

- **Sympathetic nervous system**
 - Increases vasoconstriction in both arterioles

- **Renin**
 - Secreted by juxtaglomerular cells when blood flow to afferent arteriole is reduced
 - Renin-angiotensin mechanism
Composition of Blood, Filtrate, and Urine

<table>
<thead>
<tr>
<th>Substance</th>
<th>Blood (mg/L)</th>
<th>Filtrate (mg/L)</th>
<th>Urine (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (L)</td>
<td>180</td>
<td>180</td>
<td>1.4</td>
</tr>
<tr>
<td>Cells</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Glucose (mg/L)</td>
<td>1000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>Protein (mg/L)</td>
<td>40,000</td>
<td>o-trace</td>
<td>o-trace</td>
</tr>
<tr>
<td>Urea (mg/L)</td>
<td>260</td>
<td>260</td>
<td>18,000</td>
</tr>
<tr>
<td>Na⁺ (mEq/L)</td>
<td>142</td>
<td>142</td>
<td>128</td>
</tr>
<tr>
<td>K⁺ (mEq/L)</td>
<td>5</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>HCO₃⁻ (mEq/L)</td>
<td>28</td>
<td>28</td>
<td>14</td>
</tr>
</tbody>
</table>
Incontinence and Retention

- **Incontinence**
 - Loss of voluntary control of the bladder

- **Enuresis**
 - Involuntary urination by child age older than 4 years
 - Often related to developmental delay, sleep pattern, psychosocial aspect

- **Stress incontinence (more common in women)**
 - Increased intra-abdominal pressure forces urine through sphincter.
 - Coughing, lifting, laughing
 - Multiple pregnancies
Incontinence and Retention (Cont.)

- Overflow incontinence
 - Incompetent bladder sphincter
 - Older adults
 - Weakened detrusor muscle may prevent complete emptying of bladder—frequency and incontinence
 - Spinal cord injuries or brain damage
 - Neurogenic bladder—may be spastic or flaccid
 - Interference with CNS and ANS voluntary controls of the bladder
Incontinence and Retention (Cont.)

● Retention
 - Inability to empty bladder
 - May be accompanied by overflow incontinence
 - Spinal cord injury at sacral level blocks micturition reflex
 - May follow anesthesia (general or spinal)
Diagnostic Tests
Urinalysis: Appearance of Urine

- Straw colored with mild odor
 - Normal urine, specific gravity 1.010 to 1.050
- Cloudy
 - May indicate the presence of large amounts of protein, blood, bacteria, and pus
- Dark color
 - May indicate hematuria, excessive bilirubin, or highly concentrated urine
- Unpleasant or unusual odor
 - Infection or result from certain dietary components or medication
Urinalysis: Urinary Infection

- Heavy purulence and presence of gram-negative and gram-positive organisms
Urinalysis: Abnormal Constituents of Urine

● Blood (hematuria)
 - Small amounts
 • Infection, inflammation, or tumors in urinary tract
 - Large amounts
 • Increased glomerular permeability or hemorrhage

● Elevated protein level (proteinuria, albuminuria)
 - Leakage of albumin or mixed plasma proteins into filtrate

● Bacteria (bacteriuria)
 - Infection in urinary tract
Urinalysis: Abnormal Constituents of Urine (Cont.)

- Urinary casts
 - Indicate inflammation of kidney tubules

- Specific gravity
 - Indicates ability of tubules to concentrate urine
 - Low specific gravity—dilute urine (with normal hydration)
 - High specific gravity—concentrated urine (with normal hydration)
 - Related to renal failure

- Glucose and ketones
 - Found when diabetes mellitus is not well controlled
Urinalysis: Red Blood Cell Casts in Urine
Blood Tests

- Elevated serum urea and serum creatinine levels
 - Indicate failure to excrete nitrogen wastes
 - Caused by decreased GFR
- Metabolic acidosis*
 - Indicates decreased GFR
 - Failure of tubules to control acid-base balance
- Anemia*
 - Indicates decreased erythropoietin secretion and/or bone marrow depression

*In the absence of other problems.
Blood Tests (Cont.)

- **Electrolytes**
 - Depend on related fluid balance

- **Antibody level**
 - Antistreptolysin O or antistreptokinase titers
 - Used for diagnosis of poststreptococcal glomerulonephritis

- **Elevated renin levels**
 - Indicate kidney as a cause of hypertension
Other Tests

- Culture and sensitivity studies on urine specimens
 - Identification of causative organism of infection
 - Help select appropriate drug treatment
- Radiologic tests
 - Radionuclide imaging, angiography, ultrasound, CT, MRI, intravenous pyelography
 - Used to visualize structures and possible abnormalities, flow patterns, and filtration rates
Other Tests (Cont.)

- **Clearance tests**
 - Examples: creatinine or inulin clearance
 - Used to assess GFR

- **Cystoscopy**
 - Visualizes lower urinary tract
 - May be used to perform biopsy or remove kidney stones

- **Biopsy**
 - Used to acquire tissue specimens
Diuretic Drugs

- Used to remove excess sodium ions and water from the body
 - Increased excretion of water though the kidneys
 - Reduces fluid volume in tissues and blood
 - Prescribed for many disorders
 - Renal disease, hypertension, edema, congestive heart failure, liver disease, pulmonary edema
 - Several different mechanisms to increase urine volume based on specific drug
 - Some drugs are potassium-wasting and some are potassium-sparing.
Examples of Diuretic Drugs

<table>
<thead>
<tr>
<th>Name of Drug</th>
<th>Action</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrochlorothiazide (Hydro DIURIL)</td>
<td>Inhibits reabsorption of Na(^+) and water in distal tubule (thiazide type)</td>
<td>Increase excretion of fluid in hypertension, CHF, edema</td>
</tr>
<tr>
<td>furosemide (Lasix)</td>
<td>Decreases reabsorption of Na(^+) and water in the proximal and distal tubules and the loop of Henle (a loop diuretic)</td>
<td>Reduce body fluids in hypertension, CHF, edema, renal disease, liver disease</td>
</tr>
<tr>
<td>spironolactone (Aldactone)</td>
<td>Aldosterone antagonist, blocks reabsorption of Na(^+) and K(^+) in distal tubule (potassium-sparing diuretic)</td>
<td>Decrease Na(^+) and water in body, but conserve K(^+) in CHF, hypertension, liver disease</td>
</tr>
<tr>
<td>acetazolamide (Diamox)</td>
<td>Carbonic anhydrase inhibitor blocks reabsorption of Na(^+) and secretion of H(^+)</td>
<td>Reduce fluids in CHF, glaucoma</td>
</tr>
<tr>
<td>mannitol (intravenous)</td>
<td>Increases osmotic pressure and water in the filtrate, reduces Na(^+) absorption (osmotic diuretic)</td>
<td>Cerebral edema, glaucoma</td>
</tr>
</tbody>
</table>
Dialysis

- Provides filtration and reabsorption
- Two forms
 - Hemodialysis
 - Peritoneal dialysis
- Sustains life during kidney failure
- Used to treat patients with acute kidney failure
 - Until primary problem reversed
- For patients in end-stage renal failure
 - Until kidney transplant becomes available and is successful
Principles of Dialysis
Hemodialysis

- In hospital, dialysis center, or home with special equipment and training
- Patient’s blood moves from an implanted shunt or catheter in an artery to machine
 - Exchange of wastes, fluids, and electrolytes
 - Semipermeable membrane between blood and dialysis fluid (dialysate)
 - Blood cells and proteins remain in blood.
 - After exchange is completed, blood returned to patient’s vein
Hemodialysis (Cont.)

- Usually required three times a week
 - Each lasts about 3 to 4 hours.
- Potential complications
 - Shunt may become infected.
 - Blood clots may form.
 - Blood vessels involved in shunt may become sclerosed or damaged.
 - Patient has an increased risk of infection with hepatitis B, hepatitis C, or HIV if Standard Precautions are not followed.
Hemodialysis (Cont.)

A and B From Patton KT, Thibodeau GA: Anatomy & Physiology, ed 8, St. Louis, 2013, Mosby.

Peritoneal Dialysis

- Usually done on outpatient basis
- May be done at night (during sleep) or while patient is ambulatory
- Peritoneal membrane serves as the semipermeable membrane.
- Catheter with entry and exit points is implanted into the peritoneal cavity
- Dialyzing fluid is instilled into cavity
- Dialysate is drained from cavity via gravity into container
Peritoneal Dialysis (Cont.)

- Takes more time than hemodialysis
- Requires loose clothing to accommodate bag of fluid
- Major complication
 - Infection resulting in peritonitis
- With both types of dialysis
 - Prophylactic antibiotics with either form of dialysis
 - Any additional problem occurring in patient such as infection may alter dialysis requirements
 - Caution is required with many drugs because toxic level buildup can occur.
Disorders of the Urinary System
Urinary Tract Infections (UTIs)

- Very common infections
- Urine is an excellent growth medium.
- Lower urinary tract infections
 - Cystitis
 - Urethritis
- Upper urinary tract infections
 - Pyelonephritis
- Common causative organism
 - *Escherichia coli*
Urinary Tract Infections (UTIs) (Cont.)

- Other species of organisms associated with UTIs
 - *Klebsiella*
 - *Proteus*
 - *Enterobacter*
 - *Citrobacter*
 - *Serratia*
 - *Pseudomonas*
 - *Enterococcus*
 - Coagulase-negative *Staphylococcus*
 - *Chlamydia*
 - *Mycoplasma*
Urinary Tract Infections (UTIs) (Cont.)

- More common in women because of:
 - Shortness of urethra
 - Proximity to anus

- Older men
 - Prostatic hypertrophy
 - Urine retention

- Congenital abnormalities in children

- Other common predisposing factors
 - Incontinence
 - Retention of urine
 - Direct contamination with fecal material
Causes of Infection in the Urinary Tract
Cystitis and Urethritis

- Bladder wall (cystitis) and urethra (urethritis) are inflamed.
 - Hyperactive bladder and reduced capacity
- Pain is common in pelvic area
- Dysuria, urgency, frequency, and nocturia
- Systemic signs may be present.
 - Fever, malaise, nausea, leukocytosis
- Urine often cloudy, with unusual odor
- Urinalysis indicates bacteriuria, pyuria, microscopic hematuria
Pyelonephritis

- One or both kidneys involved
- From ureter into kidney
- Purulent exudate fills pelvis and calyces
- Recurrent or chronic infection can lead to scar tissue formation.
 - Loss of tubule function
 - Obstruction and collection of filtrate → hydronephrosis
 - Eventual chronic renal failure if untreated
Pyelonephritis (Cont.)

- Signs of cystitis plus pain associated with renal disease
 - Dull, aching pain in lower back or flank area
- Systemic signs include high temperature
- Urinalysis
 - Similar to cystitis
 - Urinary casts are present.
 - Reflection of renal tubule involvement
- Treatment with antibacterials
Inflammatory Disorders: Glomerulonephritis

- Many forms
- Presence of antistreptococcal (ASO) antibodies
 - Formation of an antigen-antibody complex
 - Activates complement system
 - Inflammatory response in glomeruli
 - Increased capillary permeability—leakage of some protein and large numbers of erythrocytes
- Severe inflammatory response
 - Congestion and cell proliferation
 - Decreased GFR—retention of fluid and wastes
Inflammatory Disorders—Glomerulonephritis (Cont.)

- Urine becomes dark and cloudy
- Facial and periorbital edema—initially
 - General edema follows
- Elevated blood pressure
 - Caused by increased renin secretion and decreased GFR
- Flank or back pain
 - Edema and stretching of renal capsule
- General signs of inflammation
- Decreased urine output
Inflammatory Disorders: Glomerulonephritis (Cont.)

- Blood tests
 - Elevated serum urea and creatinine levels
 - Elevation of anti-DNase B, streptococcal antibodies, antistreptolysin, antistreptokinase
 - Complement levels decreased (use in renal inflammation)

- Metabolic acidosis

- Urinalysis
 - Proteinuria, hematuria, erythrocyte casts
 - No evidence of infection
Inflammatory Disorders: Glomerulonephritis (Cont.)

• Treatment
 ➢ Sodium restriction possible
 ➢ Protein and fluid intake decreased in severe cases
 ➢ Drug treatment
 • Glucocorticoids to reduce inflammation
 • Antihypertensives
Poststreptococcal Glomerulonephritis

- **STREPTOCOCCAL INFECTION**
- **ANTIBODY FORMATION**
 - Several weeks later — elevated ASO and ASK titer
- **ANTIGEN - ANTIBODY COMPLEX**
 - Deposits in glomerulus
- **ACUTE INFLAMMATION AND DAMAGE**
- **INCREASED PERMEABILITY OF CAPILLARY**
 - Hematuria, Albuminuria
- **GLOMERULUS SWELLING**
 - Congestion — Decreased GFR
 - Oliguria and elevated serum urea
- **CELL PROLIFERATION**
 - Stimulation of renin secretion
 - Elevated BP and edema
 - Majority: Full recovery
 - A few: Acute renal failure
 - Some: Chronic glomerulonephritis (fibrosis)
 - Death
 - Chronic renal failure

Poststreptococcal Glomerulonephritis (Cont.)

NORMAL GLOMERULUS

Capillary open — blood flow

MILD GLOMERULONEPHRITIS

Swollen endothelial cell and membrane
Narrow capillary lumen — GFR decreases
Immune complex deposits — inflammation
RBC and protein leaks into filtrate — hematuria and proteinuria

SEVERE GLOMERULONEPHRITIS

Swollen cells
Immune complex deposits — severe inflammation
Cell proliferation
Little blood flow — oliguria

= RBC
P = PROTEIN
Inflammatory Disorders: Nephrotic Syndrome

- Abnormality in glomerular capillaries, increased permeability, large amounts of plasma proteins escape into filtrate
- May be idiopathic in children 2 to 6 years old
- May be secondary to SLE, exposure to nephrotoxins or drugs
Nephrotic Syndrome: Pathophysiology

- Hypoalbuminemia with decreased plasma osmotic pressure
 - Subsequent generalized edema
- Blood pressure remains low or normal.
 - May be elevated depending on angiotensin II levels
- Increased aldosterone secretion in response to reduced blood volume
 - More severe edema
- High blood cholesterol, lipoprotein in urine, lipiduria with milky appearance to the urine
Inflammatory Disorders:
Nephrotic Syndrome (Cont.)

● Signs and symptoms
 - Proteinuria, lipiduria, cast
 - Massive edema
 - Sudden increase in girth

● Treatment
 - Glucocorticoids
 - To reduce inflammation
 - ACE inhibitors
 - May decrease protein loss in urine
 - Antihypertensives
 - Sodium intake may be restricted.
Urinary Tract Obstructions
Urolithiasis (Calculi)

- Can develop anywhere in urinary tract
- Stones may be small or very large.
- Tend to form with:
 - Excessive amounts of solutes in filtrate
 - Insufficient fluid intake—major factor for calculi formation
 - Urinary tract infection
- Manifestations only occur with obstruction of urine flow.
 - May lead to infection
 - Hydronephrosis with dilation of calyces
 - If located in kidney or ureter and atrophy of renal tissue
Hydronephrosis
Urolithiasis (Calculi) (Cont.)

- Calculi composed of calcium salts
 - High urine calcium levels
 - Form readily with highly alkaline urine
- Uric acid stones
 - Hyperuricemia
 - Gout, high-purine diets, cancer chemotherapy
 - Especially with acidic urine
- Struvite and cystine stones
- Stone formation depends on predisposing factor.
Stones in kidney or bladder often asymptomatic
 - Frequent infections may lead to investigation.
 - Flank pain possible caused by distention of renal capsule

Renal colic caused by obstruction of the ureter
 - Intense spasms of pain in flank area
 - Radiating into groin area
 - Lasts until stone passes or is removed
 - Possible nausea and vomiting, cool moist skin, rapid pulse
 - Radiological examination confirms location of calculi.
Urolithiasis (Calculi) (Cont.)

- **Treatment**
 - Small stones will be passed eventually.
 - Extracorporeal shock wave lithotripsy (ESWL)
 - Laser lithotripsy
 - Drugs may be used to dissolve stones partially.
 - Surgery

- **Prevention**
 - Treatment of underlying condition
 - Adjustment of urine pH through dietary modifications
 - Consistent increased fluid intake
Hydronephrosis

- Secondary problem caused by:
 - Complication of calculi
 - Tumors, scar tissue in kidney or ureter
 - Untreated prostatic enlargement
 - Developmental abnormalities restricting urine flow
- Frequently asymptomatic in early stages
- Can be diagnosed with ultrasonography, radionucleotide imaging, CT, or renal scan
- If cause is not removed—chronic renal failure
Tumors: Renal Cell Carcinoma

- Primary tumor arising from the tubule epithelium
 - More often in renal cortex
- Tends to symptomatic in early stages
- Often has metastasized to liver, lung, bone, or central nervous system at time of diagnosis
- Occurs more frequently in men and smokers
- Treatment is removal of kidney.
- Immunotherapy may be used in some cases.
- Tumor is radioresistant, and chemotherapy is not used in most cases.
Tumors: Renal Cell Carcinoma (Cont.)

- Manifestations
 - Painless hematuria initially
 - Gross or microscopic
 - Dull, aching flank pain
 - Palpable mass
 - Unexplained weight loss
 - Anemia or erythrocytosis
 - Paraneoplastic syndromes
 - Hypercalcemia or Cushing’s syndrome
Tumors: Bladder Cancer

- Most bladder tumors are malignant and commonly arise from transitional epithelium of the bladder.
- Often develops as multiple tumors
- Diagnosed by urine cytology and biopsy
- Early signs
 - Hematuria, dysuria
 - Infection common
- Tumor is invasive through wall to adjacent structures.
 - Metastasizes to pelvic lymph nodes, liver, and bone
Tumors: Bladder Cancer (Cont.)

- Predisposing factors
 - Working with chemicals in laboratories and industry
 - Particularly aniline dyes, rubber, aluminum
 - Cigarette smoking
 - Recurrent infections
 - Heavy intake of analgesics

- Treatment
 - Surgical resection of tumor
 - Chemotherapy and radiation
 - Photoradiation successful in some early cases
Vascular Disorders: Nephrosclerosis

- Involves vascular changes in the kidney
 - Some occur normally with aging.
- Thickening and hardening of the walls of arterioles and small arteries
- Narrowing of the blood vessel lumen
 - Reduction of blood supply to kidney
 - Stimulation of renin
 - Increased blood pressure
 - Continued ischemia
 - Destruction of renal tissue
 - Chronic renal failure
Hypertension and the Kidney
Nephrosclerosis (Cont.)

- Can be primary lesion developed in kidney
- May be secondary to essential hypertension

Treatment
- Antihypertensive agents
- Diuretics
- Beta blockers
- Sodium intake should be reduced.
Congenital Disorders

- Vesicoureteral reflux
- Agenesis
 - Failure of one kidney to develop
- Hypoplasia
 - Failure to develop to normal size
- Ectopic kidney
 - Kidney and ureter displaced out of normal position
- “Horseshoe” kidney
 - Fusion of the two kidneys
Adult Polycystic Kidney

- Autosomal dominant gene on chromosome 16
- No indications in child and young adults
- First manifestations usually around age 40 years
- Multiple cysts develop in both kidneys.
 - Enlargement of kidneys
 - Compression and destruction of kidney tissue
 - Chronic renal failure
- Diagnosis by abdominal CT scanning or MRI
Polycystic Kidney

- Figure 18-15, A—external surface of enlarged kidney, showing cysts.
- Figure 18-15, B—bisected, shows large interior cysts.
Wilms’ Tumor

- Most common tumor in children
- Defects in tumor suppressor genes on chromosome 11
 - May occur in conjunction with other congenital disorders
- Usually unilateral
 - Large encapsulated mass
- Pulmonary metastases may be present at diagnosis.
Renal Failure
Acute Renal Failure

Causes

- Acute bilateral kidney diseases
- Severe, prolonged circulatory shock or heart failure
- Nephrotoxins
 - Drugs, chemicals, or toxins
- Mechanical obstruction (occasionally)
 - Calculi, blood clots, tumors
 - Block urine flow beyond kidneys
Acute Renal Failure (Cont.)

- Sudden onset
- Blood tests
 - Elevated serum urea nitrogen and creatinine levels
 - Metabolic acidosis and hyperkalemia
- Treatment
 - Identify and remove or treat primary problem.
 - To minimize risk of necrosis and permanent kidney damage
 - Dialysis
 - To normalize body fluids and maintain homeostasis
Causes of Renal Failure: Nephrotoxins

1. Filtrate becomes concentrated
2. Concentrated nephrotoxin → tubule wall becomes swollen and necrotic
3. Normal lumen → Obstructed lumen
4. Filtrate: high back pressure
5. Decreased GFR
6. OLIGURIA

NPHROTOXINS

Causes of Renal Failure: Ischemia

1. GLOMERULUS
 - Severe shock
 - Vasoconstriction
 - Decreased blood flow

2. TUBULE
 - Ischemia
 - Swelling
 - Necrosis
 - Obstruction

3. FILTRATE: High back pressure

4. OLIGURIA

Causes of Renal Failure:
Pyelonephritis
Chronic Renal Failure

- Gradual irreversible destruction of the kidneys over a long period of time
- Asymptomatic in early stages
- May result from
 - Chronic kidney disease
 - Congenital polycystic kidney disease
 - Systemic disorders
 - Low-level exposure to nephrotoxins over sustained period of time
Chronic Renal Failure: Stages

- **Decreased renal reserve**
 - Decrease in GFR
 - Higher than normal serum creatinine levels
 - No apparent clinical symptoms

- **Renal insufficiency**
 - Decreased GFR to about 20% of normal
 - Significant retention of nitrogen wastes
 - Excretion of large volumes of dilute urine
 - Decreased erythropoiesis
 - Elevated blood pressure
Chronic Renal Failure: Stages (Cont.)

- End-stage renal failure
 - Negligible GFR
 - Fluid, electrolytes, and wastes retained in body
 - Azotemia, anemia, and acidosis (three As)
 - All body systems affected
 - Marked oliguria or anuria
 - Regular dialysis or kidney transplantation
 - To maintain patient’s life
Development of Chronic Renal Failure

- Normal kidneys
- Nonfunctional area
- Fibrotic area
- Extensive damage
- Fibrotic kidneys shrink

No. of NEPHRONS

Function 100% → Decreasing renal reserve (asymptomatic) → Renal insufficiency → End-stage failure (uremia)

TIME

Copyright © 2014, 2011, 2006 by Saunders, an imprint of Elsevier Inc.
Chronic Renal Failure (Cont.)

- Early signs
 - Increased urinary output
 - General signs
 - Anorexia
 - Nausea
 - Anemia
 - Fatigue
 - Unintended weight loss
 - Exercise intolerance
 - Bone marrow depression and impaired cell function
 - Caused by increased wastes and altered blood chemistry
 - Elevated blood pressure
Chronic Renal Failure (Cont.)

- Complete failure
 - Oliguria
 - Dry, pruritic, hyperpigmented skin, easy bruising
 - Peripheral neuropathy
 - Impotence in men, menstrual irregularities in women
 - Encephalopathy
 - Congestive heart failure, dysrhythmias
 - Failure to activate vitamin D
 - Possible uremic frost on the skin
 - Systemic infections
Chronic Renal Failure (Cont.)

- Diagnostic tests
 - Anemia, acidosis, and azotemia are the key indicators of chronic renal failure.

- Treatment—all body systems are affected.
 - Difficult to maintain homeostasis of fluids, electrolytes, and acid-base balance
 - Drugs to stimulate erythropoiesis
 - Drugs to treat cardiovascular problems
 - Intake of fluid, electrolytes, protein must be restricted
 - Dialysis or transplantation
Comparison of Acute and Chronic Renal Failure

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Acute Renal Failure</th>
<th>Chronic Renal Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causes</td>
<td>Severe shock, Burns, Nephrotoxins, massive exposure, Acute bilateral kidney infection or inflammation</td>
<td>Nephrosclerosis, Diabetes mellitus, Nephrotoxins, long-term exposure, Chronic bilateral kidney inflammation or infection, Polycystic disease</td>
</tr>
<tr>
<td>Onset</td>
<td>Sudden, acute</td>
<td>Slow, insidious</td>
</tr>
<tr>
<td>Early signs</td>
<td>Oliguria, increased serum urea</td>
<td>Polyuria with dilute urine, Anemia, fatigue, hypertension</td>
</tr>
<tr>
<td>Progressive signs</td>
<td>Recovery—increasing urine output</td>
<td>End-stage failure or uremia</td>
</tr>
<tr>
<td></td>
<td>If prolonged failure—uremia</td>
<td>Oliguria, acidosis, azotemia</td>
</tr>
</tbody>
</table>