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The speed of light in vacuum, commonly denoted c, is a universal physical constant 
important in many areas of physics. Its precise value is 299792458 metres per second 
(approximately 3.00×108 m/s), since the length of the metre is defined from this constant 
and the international standard for time.[1] According to special relativity, c is the 
maximum speed at which all matter and information in the universe can travel. It is the 
speed at which all massless particles and changes of the associated fields (including 
electromagnetic radiation such as light and gravitational waves) travel in vacuum. Such 
particles and waves travel at c regardless of the motion of the source or the inertial 
reference frame of the observer. In the theory of relativity, c interrelates space and time, 
and also appears in the famous equation of mass–energy equivalence E = mc2.[2] 

 
Speed of light 

 
Sunlight takes about 8 minutes 17 seconds to travel the average 

distance from the surface of the Sun to the Earth. 
 

Exact values 
metres per second 299792458 
Planck length per Planck time 
(i.e., Planck units) 1 

Approximate values (to three significant digits) 
kilometres per hour 1080 million (1.08×109) 
miles per second 186000 
miles per hour 671 million (6.71×108) 
  

 
 
 



Approximate light signal travel times 
Distance Time 
one foot 1.0 ns 
one metre 3.3 ns 
from geostationary orbit to Earth 119 ms 
the length of Earth's equator 134 ms 
from Moon to Earth 1.3 s 
from Sun to Earth (1 AU) 8.3 min 
one light year 1.0 year 
one parsec 3.26 years 
from nearest star to Sun (1.3 pc) 4.2 years 
from the nearest galaxy (the 
Canis Major Dwarf Galaxy) to 
Earth 

25000 years 

across the Milky Way 100000 years 
from the Andromeda Galaxy to 
Earth 2.5 million years 

from Earth to the edge of the 
observable universe 46.5 billion years 

The speed at which light propagates through transparent materials, such as glass or air, is 
less than c; similarly, the speed of radio waves in wire cables is slower than c. The ratio 
between c and the speed v at which light travels in a material is called the refractive index 
n of the material (n = c / v). For example, for visible light the refractive index of glass is 
typically around 1.5, meaning that light in glass travels at c / 1.5 ≈ 200000 km/s; the 
refractive index of air for visible light is about 1.0003, so the speed of light in air is about 
299700 km/s (about 90 km/s slower than c). 

For many practical purposes, light and other electromagnetic waves will appear to 
propagate instantaneously, but for long distances and very sensitive measurements, their 
finite speed has noticeable effects. In communicating with distant space probes, it can 
take minutes to hours for a message to get from Earth to the spacecraft, or vice versa. The 
light seen from stars left them many years ago, allowing the study of the history of the 
universe by looking at distant objects. The finite speed of light also limits the theoretical 
maximum speed of computers, since information must be sent within the computer from 
chip to chip. The speed of light can be used with time of flight measurements to measure 
large distances to high precision. 

Ole Rømer first demonstrated in 1676 that light travels at a finite speed (as opposed to 
instantaneously) by studying the apparent motion of Jupiter's moon Io. In 1865, James 
Clerk Maxwell proposed that light was an electromagnetic wave, and therefore travelled 
at the speed c appearing in his theory of electromagnetism.[3] In 1905, Albert Einstein 
postulated that the speed of light with respect to any inertial frame is independent of the 



motion of the light source,[4] and explored the consequences of that postulate by deriving 
the special theory of relativity and showing that the parameter c had relevance outside of 
the context of light and electromagnetism. 

After centuries of increasingly precise measurements, in 1975 the speed of light was 
known to be 299792458 m/s with a measurement uncertainty of 4 parts per billion. In 
1983, the metre was redefined in the International System of Units (SI) as the distance 
travelled by light in vacuum in 1/299792458 of a second. As a result, the numerical value 
of c in metres per second is now fixed exactly by the definition of the metre.[5] 

Numerical value, notation, and units 
The speed of light in vacuum is usually denoted by a lowercase c, for "constant" or the 
Latin celeritas (meaning "swiftness, celerity"). Historically, the symbol V was used for as 
an alternative symbol for the speed of light, introduced by James Clerk Maxwell in 1865. 
In 1856, Wilhelm Eduard Weber and Rudolf Kohlrausch had used c for a different 
constant later shown to equal √2 times the speed of light in vacuum. In 1894, Paul Drude 
redefined c with its modern meaning. Einstein used V in his original German-language 
papers on special relativity in 1905, but in 1907 he switched to c, which by then had 
become the standard symbol for the speed of light.[6][7] 

Sometimes c is used for the speed of waves in any material medium, and c0 for the speed 
of light in vacuum.[8] This subscripted notation, which is endorsed in official SI 
literature,[5] has the same form as other related constants: namely, μ0 for the vacuum 
permeability or magnetic constant, ε0 for the vacuum permittivity or electric constant, and 
Z0 for the impedance of free space. This article uses c exclusively for the speed of light in 
vacuum. 

Since 1983, the metre has been defined in the International System of Units (SI) as the 
distance light travels in vacuum in 1⁄299792458 of a second. This definition fixes the speed of 
light in vacuum at exactly 299792458 m/s.[9][10][11] As a dimensional physical constant, 
the numerical value of c is different for different unit systems.[Note 2] In branches of 
physics in which c appears often, such as in relativity, it is common to use systems of 
natural units of measurement or the geometrized unit system where c = 1.[13][14] Using 
these units, c does not appear explicitly because multiplication or division by 1 does not 
affect the result. 

Fundamental role in physics 
See also: Special relativity and One-way speed of light 

The speed at which light waves propagate in vacuum is independent both of the motion 
of the wave source and of the inertial frame of reference of the observer.[Note 3] This 
invariance of the speed of light was postulated by Einstein in 1905,[4] after being 
motivated by Maxwell's theory of electromagnetism and the lack of evidence for the 



luminiferous aether;[15] it has since been consistently confirmed by many experiments. It 
is only possible to verify experimentally that the two-way speed of light (for example, 
from a source to a mirror and back again) is frame-independent, because it is impossible 
to measure the one-way speed of light (for example, from a source to a distant detector) 
without some convention as to how clocks at the source and at the detector should be 
synchronized. However, by adopting Einstein synchronization for the clocks, the one-
way speed of light becomes equal to the two-way speed of light by definition.[16][17] The 
special theory of relativity explores the consequences of this invariance of c with the 
assumption that the laws of physics are the same in all inertial frames of reference.[18][19] 
One consequence is that c is the speed at which all massless particles and waves, 
including light, must travel in vacuum. 

 
The Lorentz factor γ as a function of velocity. It starts at 1 and approaches infinity as v 
approaches c. 

Special relativity has many counterintuitive and experimentally verified implications.[20] 
These include the equivalence of mass and energy (E = mc2), length contraction (moving 
objects shorten),[Note 4] and time dilation (moving clocks run more slowly). The factor γ by 
which lengths contract and times dilate is known as the Lorentz factor and is given by γ = 
(1 − v2/c2)−1/2, where v is the speed of the object. The difference of γ from 1 is negligible 
for speeds much slower than c, such as most everyday speeds—in which case special 
relativity is closely approximated by Galilean relativity—but it increases at relativistic 
speeds and diverges to infinity as v approaches c. 

The results of special relativity can be summarized by treating space and time as a unified 
structure known as spacetime (with c relating the units of space and time), and requiring 
that physical theories satisfy a special symmetry called Lorentz invariance, whose 
mathematical formulation contains the parameter c.[23] Lorentz invariance is an almost 
universal assumption for modern physical theories, such as quantum electrodynamics, 
quantum chromodynamics, the Standard Model of particle physics, and general relativity. 
As such, the parameter c is ubiquitous in modern physics, appearing in many contexts 
that are unrelated to light. For example, general relativity predicts that c is also the speed 
of gravity and of gravitational waves.[24][25] In non-inertial frames of reference 
(gravitationally curved space or accelerated reference frames), the local speed of light is 
constant and equal to c, but the speed of light along a trajectory of finite length can differ 
from c, depending on how distances and times are defined.[26] 



It is generally assumed that fundamental constants such as c have the same value 
throughout spacetime, meaning that they do not depend on location and do not vary with 
time. However, it has been suggested in various theories that the speed of light may have 
changed over time.[27][28] No conclusive evidence for such changes has been found, but 
they remain the subject of ongoing research.[29][30] 

It also is generally assumed that the speed of light is isotropic, meaning that it has the 
same value regardless of the direction in which it is measured. Observations of the 
emissions from nuclear energy levels as a function of the orientation of the emitting 
nuclei in a magnetic field (see Hughes–Drever experiment), and of rotating optical 
resonators (see Resonator experiments) have put stringent limits on the possible two-way 
anisotropy.[31][32] 

Upper limit on speeds 

According to special relativity, the energy of an object with rest mass m and speed v is 
given by γmc2, where γ is the Lorentz factor defined above. When v is zero, γ is equal to 
one, giving rise to the famous E = mc2 formula for mass–energy equivalence. The γ factor 
approaches infinity as v approaches c, and it would take an infinite amount of energy to 
accelerate an object with mass to the speed of light. The speed of light is the upper limit 
for the speeds of objects with positive rest mass, and individual photons cannot travel 
faster than the speed of light.[33][34] This is experimentally established in many tests of 
relativistic energy and momentum.[35] 

 
Event A precedes B in the red frame, is simultaneous with B in the green frame, and 
follows B in the blue frame. 

More generally, it is normally impossible for information or energy to travel faster than c. 
One argument for this follows from the counter-intuitive implication of special relativity 
known as the relativity of simultaneity. If the spatial distance between two events A 
and B is greater than the time interval between them multiplied by c then there are frames 
of reference in which A precedes B, others in which B precedes A, and others in which 
they are simultaneous. As a result, if something were travelling faster than c relative to an 
inertial frame of reference, it would be travelling backwards in time relative to another 



frame, and causality would be violated.[Note 5][37] In such a frame of reference, an "effect" 
could be observed before its "cause". Such a violation of causality has never been 
recorded,[17] and would lead to paradoxes such as the tachyonic antitelephone.[38] 

Faster-than-light observations and experiments 
Main article: Faster-than-light 
Further information: Superluminal motion 

There are situations in which it may seem that matter, energy, or information travels at 
speeds greater than c, but they do not. For example, as is discussed in the propagation of 
light in a medium section below, many wave velocities can exceed c. For example, the 
phase velocity of X-rays through most glasses can routinely exceed c,[39] but phase 
velocity does not determine the velocity at which waves convey information.[40] 

If a laser beam is swept quickly across a distant object, the spot of light can move faster 
than c, although the initial movement of the spot is delayed because of the time it takes 
light to get to the distant object at the speed c. However, the only physical entities that are 
moving are the laser and its emitted light, which travels at the speed c from the laser to 
the various positions of the spot. Similarly, a shadow projected onto a distant object can 
be made to move faster than c, after a delay in time.[41] In neither case does any matter, 
energy, or information travel faster than light.[42] 

The rate of change in the distance between two objects in a frame of reference with 
respect to which both are moving (their closing speed) may have a value in excess of c. 
However, this does not represent the speed of any single object as measured in a single 
inertial frame.[42] 

Certain quantum effects appear to be transmitted instantaneously and therefore faster than 
c, as in the EPR paradox. An example involves the quantum states of two particles that 
can be entangled. Until either of the particles is observed, they exist in a superposition of 
two quantum states. If the particles are separated and one particle's quantum state is 
observed, the other particle's quantum state is determined instantaneously (i.e., faster than 
light could travel from one particle to the other). However, it is impossible to control 
which quantum state the first particle will take on when it is observed, so information 
cannot be transmitted in this manner.[42][43] 

Another quantum effect that predicts the occurrence of faster-than-light speeds is called 
the Hartman effect; under certain conditions the time needed for a virtual particle to 
tunnel through a barrier is constant, regardless of the thickness of the barrier.[44][45] This 
could result in a virtual particle crossing a large gap faster-than-light. However, no 
information can be sent using this effect.[46] 

So-called superluminal motion is seen in certain astronomical objects,[47] such as the 
relativistic jets of radio galaxies and quasars. However, these jets are not moving at 
speeds in excess of the speed of light: the apparent superluminal motion is a projection 



effect caused by objects moving near the speed of light and approaching Earth at a small 
angle to the line of sight: since the light which was emitted when the jet was farther away 
took longer to reach the Earth, the time between two successive observations corresponds 
to a longer time between the instants at which the light rays were emitted.[48] 

In models of the expanding universe, the farther galaxies are from each other, the faster 
they drift apart. This receding is not due to motion through space, but rather to the 
expansion of space itself.[42] For example, galaxies far away from Earth appear to be 
moving away from the Earth with a speed proportional to their distances. Beyond a 
boundary called the Hubble sphere, the rate at which their distance from Earth increases 
becomes greater than the speed of light.[49] 

Propagation of light 
In classical physics, light is described as a type of electromagnetic wave. The classical 
behaviour of the electromagnetic field is described by Maxwell's equations, which predict 
that the speed c with which electromagnetic waves (such as light) propagate through the 
vacuum is related to the electric constant ε0 and the magnetic constant μ0 by the equation 
c = 1/√ε0μ0.[50] In modern quantum physics, the electromagnetic field is described by the 
theory of quantum electrodynamics (QED). In this theory, light is described by the 
fundamental excitations (or quanta) of the electromagnetic field, called photons. In QED, 
photons are massless particles and thus, according to special relativity, they travel at the 
speed of light in vacuum. 

Extensions of QED in which the photon has a mass have been considered. In such a 
theory, its speed would depend on its frequency, and the invariant speed c of special 
relativity would then be the upper limit of the speed of light in vacuum.[26] No variation 
of the speed of light with frequency has been observed in rigorous testing,[51][52][53] 
putting stringent limits on the mass of the photon. The limit obtained depends on the 
model used: if the massive photon is described by Proca theory,[54] the experimental 
upper bound for its mass is about 10−57 grams;[55] if photon mass is generated by a Higgs 
mechanism, the experimental upper limit is less sharp, m ≤ 10−14 eV/c2 [54] (roughly 
2 × 10−47 g). 

Another reason for the speed of light to vary with its frequency would be the failure of 
special relativity to apply to arbitrarily small scales, as predicted by some proposed 
theories of quantum gravity. In 2009, the observation of the spectrum of gamma-ray burst 
GRB 090510 did not find any difference in the speeds of photons of different energies, 
confirming that Lorentz invariance is verified at least down to the scale of the Planck 
length (lP = √ħG/c3 ≈ 1.6163×10−35 m) divided by 1.2.[56] 

 

 



In a medium 

In a medium, light usually does not propagate at a speed equal to c; further, different 
types of light wave will travel at different speeds. The speed at which the individual 
crests and troughs of a plane wave (a wave filling the whole space, with only one 
frequency) propagate is called the phase velocity vp. An actual physical signal with a 
finite extent (a pulse of light) travels at a different speed. The largest part of the pulse 
travels at the group velocity vg, and its earliest part travels at the front velocity vf. 

The phase velocity is important in determining how a light wave travels through a 
material or from one material to another. It is often represented in terms of a refractive 
index. The refractive index of a material is defined as the ratio of c to the phase 
velocity vp in the material: larger indices of refraction indicate lower speeds. The 
refractive index of a material may depend on the light's frequency, intensity, polarization, 
or direction of propagation; in many cases, though, it can be treated as a material-
dependent constant. The refractive index of air is approximately 1.0003.[57] Denser media, 
such as water,[58] glass,[59] and diamond,[60] have refractive indexes of around 1.3, 1.5 and 
2.4, respectively, for visible light. In exotic materials like Bose–Einstein condensates 
near absolute zero, the effective speed of light may be only a few metres per second. 
However, this represents absorption and re-radiation delay between atoms, as do all 
slower-than-c speeds in material substances. As an extreme example of light "slowing" in 
matter, two independent teams of physicists claimed to bring light to a "complete 
standstill" by passing it through a Bose–Einstein condensate of the element rubidium, one 
team at Harvard University and the Rowland Institute for Science in Cambridge, Mass., 
and the other at the Harvard–Smithsonian Center for Astrophysics, also in Cambridge. 
However, the popular description of light being "stopped" in these experiments refers 
only to light being stored in the excited states of atoms, then re-emitted at an arbitrarily 
later time, as stimulated by a second laser pulse. During the time it had "stopped," it had 
ceased to be light. This type of behaviour is generally microscopically true of all 
transparent media which "slow" the speed of light.[61] 

In transparent materials, the refractive index generally is greater than 1, meaning that the 
phase velocity is less than c. In other materials, it is possible for the refractive index to 
become smaller than 1 for some frequencies; in some exotic materials it is even possible 
for the index of refraction to become negative.[62] The requirement that causality is not 
violated implies that the real and imaginary parts of the dielectric constant of any material, 
corresponding respectively to the index of refraction and to the attenuation coefficient, 
are linked by the Kramers–Kronig relations.[63] In practical terms, this means that in a 
material with refractive index less than 1, the absorption of the wave is so quick that no 
signal can be sent faster than c. 

A pulse with different group and phase velocities (which occurs if the phase velocity is 
not the same for all the frequencies of the pulse) smears out over time, a process known 
as dispersion. Certain materials have an exceptionally low (or even zero) group velocity 
for light waves, a phenomenon called slow light, which has been confirmed in various 
experiments.[64][65][66][67] The opposite, group velocities exceeding c, has also been shown 



in experiment.[68] It should even be possible for the group velocity to become infinite or 
negative, with pulses travelling instantaneously or backwards in time.[69] 

None of these options, however, allow information to be transmitted faster than c. It is 
impossible to transmit information with a light pulse any faster than the speed of the 
earliest part of the pulse (the front velocity). It can be shown that this is (under certain 
assumptions) always equal to c.[69] 

It is possible for a particle to travel through a medium faster than the phase velocity of 
light in that medium (but still slower than c). When a charged particle does that in a 
dielectric material, the electromagnetic equivalent of a shock wave, known as Cherenkov 
radiation, is emitted.[70] 

Practical effects of finiteness 
The speed of light is of relevance to communications: the one-way and round-trip delay 
time are greater than zero. This applies from small to astronomical scales. On the other 
hand, some techniques depend on the finite speed of light, for example in distance 
measurements. 

Small scales 

In supercomputers, the speed of light imposes a limit on how quickly data can be sent 
between processors. If a processor operates at 1 gigahertz, a signal can only travel a 
maximum of about 30 centimetres (1 ft) in a single cycle. Processors must therefore be 
placed close to each other to minimize communication latencies; this can cause difficulty 
with cooling. If clock frequencies continue to increase, the speed of light will eventually 
become a limiting factor for the internal design of single chips.[71] 

Large distances on Earth 

For example, given the equatorial circumference of the Earth is about 40075 km and c 
about 300000 km/s, the theoretical shortest time for a piece of information to travel half 
the globe along the surface is about 67 milliseconds. When light is travelling around the 
globe in an optical fibre, the actual transit time is longer, in part because the speed of 
light is slower by about 35% in an optical fibre, depending on its refractive index n.[72] 
Furthermore, straight lines rarely occur in global communications situations, and delays 
are created when the signal passes through an electronic switch or signal regenerator.[73] 

Spaceflights and astronomy 

 
A beam of light is depicted travelling between the Earth and the Moon in the time it takes 
a light pulse to move between them: 1.255 seconds at their mean orbital (surface-to-



surface) distance. The relative sizes and separation of the Earth–Moon system are shown 
to scale. 

Similarly, communications between the Earth and spacecraft are not instantaneous. There 
is a brief delay from the source to the receiver, which becomes more noticeable as 
distances increase. This delay was significant for communications between ground 
control and Apollo 8 when it became the first manned spacecraft to orbit the Moon: for 
every question, the ground control station had to wait at least three seconds for the 
answer to arrive.[74] The communications delay between Earth and Mars can vary 
between five and twenty minutes depending upon the relative positions of the two planets. 
As a consequence of this, if a robot on the surface of Mars were to encounter a problem, 
its human controllers would not be aware of it until at least five minutes later, and 
possibly up to twenty minutes later; it would then take a further five to twenty minutes 
for instructions to travel from Earth to Mars. 

NASA must wait several hours for information from a probe orbiting Jupiter, and if it 
needs to correct a navigation error, the fix will not arrive at the spacecraft for an equal 
amount of time, creating a risk of the correction not arriving in time. 

Receiving light and other signals from distant astronomical sources can even take much 
longer. For example, it has taken 13 billion (13×109) years for light to travel to Earth 
from the faraway galaxies viewed in the Hubble Ultra Deep Field images.[75][76] Those 
photographs, taken today, capture images of the galaxies as they appeared 13 billion 
years ago, when the universe was less than a billion years old.[75] The fact that more 
distant objects appear to be younger, due to the finite speed of light, allows astronomers 
to infer the evolution of stars, of galaxies, and of the universe itself. 

Astronomical distances are sometimes expressed in light-years, especially in popular 
science publications and media.[77] A light-year is the distance light travels in one year, 
around 9461 billion kilometres, 5879 billion miles, or 0.3066 parsecs. In round figures, a 
light year is nearly 10 trillion kilometres or nearly 6 trillion miles. Proxima Centauri, the 
closest star to Earth after the Sun, is around 4.2 light-years away.[78] 

Distance measurement 

Main article: Distance measurement 

Radar systems measure the distance to a target by the time it takes a radio-wave pulse to 
return to the radar antenna after being reflected by the target: the distance to the target is 
half the round-trip transit time multiplied by the speed of light. A Global Positioning 
System (GPS) receiver measures its distance to GPS satellites based on how long it takes 
for a radio signal to arrive from each satellite, and from these distances calculates the 
receiver's position. Because light travels about 300000 kilometres (186000 mi) in one 
second, these measurements of small fractions of a second must be very precise. The 
Lunar Laser Ranging Experiment, radar astronomy and the Deep Space Network 



determine distances to the Moon,[79] planets[80] and spacecraft,[81] respectively, by 
measuring round-trip transit times. 

High-frequency trading 

The speed of light has become important in high-frequency trading, where traders seek to 
gain minute advantages by delivering their trades to exchanges fractions of a second 
ahead of other traders. For example, traders have been switching to microwave 
communications between trading hubs, because of the advantage which microwaves 
travelling at near to the speed of light in air, have over fibre optic signals which travel 
30–40% slower at the speed of light through glass.[82] 

Measurement 
There are different ways to determine the value of c. One way is to measure the actual 
speed at which light waves propagate, which can be done in various astronomical and 
earth-based setups. However, it is also possible to determine c from other physical laws 
where it appears, for example, by determining the values of the electromagnetic constants 
ε0 and μ0 and using their relation to c. Historically, the most accurate results have been 
obtained by separately determining the frequency and wavelength of a light beam, with 
their product equalling c. 

In 1983 the metre was defined as "the length of the path travelled by light in vacuum 
during a time interval of 1⁄299792458 of a second",[83] fixing the value of the speed of light at 
299792458 m/s by definition, as described below. Consequently, accurate measurements 
of the speed of light yield an accurate realization of the metre rather than an accurate 
value of c. 

Astronomical measurements 

 
Measurement of the speed of light using the eclipse of Io by Jupiter 

Outer space is a convenient setting for measuring the speed of light because of its large 
scale and nearly perfect vacuum. Typically, one measures the time needed for light to 
traverse some reference distance in the solar system, such as the radius of the Earth's 



orbit. Historically, such measurements could be made fairly accurately, compared to how 
accurately the length of the reference distance is known in Earth-based units. It is 
customary to express the results in astronomical units (AU) per day. 

Ole Christensen Rømer used an astronomical measurement to make the first quantitative 
estimate of the speed of light.[84][85] When measured from Earth, the periods of moons 
orbiting a distant planet are shorter when the Earth is approaching the planet than when 
the Earth is receding from it. The distance travelled by light from the planet (or its moon) 
to Earth is shorter when the Earth is at the point in its orbit that is closest to its planet than 
when the Earth is at the farthest point in its orbit, the difference in distance being the 
diameter of the Earth's orbit around the Sun. The observed change in the moon's orbital 
period is caused by the difference in the time it takes light to traverse the shorter or 
longer distance. Rømer observed this effect for Jupiter's innermost moon Io and deduced 
that light takes 22 minutes to cross the diameter of the Earth's orbit. 

 
 
Aberration of light: light from a distant source appears to be from a different location for 
a moving telescope due to the finite speed of light. 

Another method is to use the aberration of light, discovered and explained by James 
Bradley in the 18th century.[86] This effect results from the vector addition of the velocity 
of light arriving from a distant source (such as a star) and the velocity of its observer (see 
diagram on the right). A moving observer thus sees the light coming from a slightly 
different direction and consequently sees the source at a position shifted from its original 
position. Since the direction of the Earth's velocity changes continuously as the Earth 
orbits the Sun, this effect causes the apparent position of stars to move around. From the 
angular difference in the position of stars (maximally 20.5 arcseconds)[87] it is possible to 
express the speed of light in terms of the Earth's velocity around the Sun, which with the 
known length of a year can be converted to the time needed to travel from the Sun to the 
Earth. In 1729, Bradley used this method to derive that light travelled 10,210 times faster 
than the Earth in its orbit (the modern figure is 10,066 times faster) or, equivalently, that 
it would take light 8 minutes 12 seconds to travel from the Sun to the Earth.[86] 



Astronomical unit 

An astronomical unit (AU) is approximately the average distance between the Earth and 
Sun. It was redefined in 2012 as exactly 149597870700 m.[88][89] Previously the AU was 
not based on the International System of Units but in terms of the gravitational force 
exerted by the Sun in the framework of classical mechanics.[Note 6] The current definition 
uses the recommended value in metres for the previous definition of the astronomical unit, 
which was determined by measurement.[88] This redefinition is analogous to that of the 
metre, and likewise has the effect of fixing the speed of light to an exact value in 
astronomical units per second (via the exact speed of light in metres per second). 

Previously, the inverse of c expressed in seconds per astronomical unit was measured by 
comparing the time for radio signals to reach different spacecraft in the Solar System, 
with their position calculated from the gravitational effects of the Sun and various planets. 
By combining many such measurements, a best fit value for the light time per unit 
distance could be obtained. For example, in 2009, the best estimate, as approved by the 
International Astronomical Union (IAU), was:[91][92] 

light time for unit distance: 499.004783836(10) s 
c = 0.00200398880410(4) AU/s = 173.144632674(3) AU/day. 

The relative uncertainty in these measurements is 0.02 parts per billion (2×10−11), 
equivalent to the uncertainty in Earth-based measurements of length by interferometry.[93] 
Since the metre is defined to be the length travelled by light in a certain time interval, the 
measurement of the light time in terms of the previous definition of the astronomical unit 
can also be interpreted as measuring the length of an AU (old definition) in metres.[Note 7] 

Time of flight techniques 

 
One of the last and most accurate time of flight measurements, Michelson, Pease and 
Pearson's 1930–35 experiment used a rotating mirror and a one-mile (1.6 km) long 



vacuum chamber which the light beam traversed 10 times. It achieved accuracy of 
±11 km/s 

 
Diagram of the Fizeau apparatus 

A method of measuring the speed of light is to measure the time needed for light to travel 
to a mirror at a known distance and back. This is the working principle behind the 
Fizeau–Foucault apparatus developed by Hippolyte Fizeau and Léon Foucault. 

The setup as used by Fizeau consists of a beam of light directed at a mirror 8 kilometres 
(5 mi) away. On the way from the source to the mirror, the beam passes through a 
rotating cogwheel. At a certain rate of rotation, the beam passes through one gap on the 
way out and another on the way back, but at slightly higher or lower rates, the beam 
strikes a tooth and does not pass through the wheel. Knowing the distance between the 
wheel and the mirror, the number of teeth on the wheel, and the rate of rotation, the speed 
of light can be calculated.[94] 

The method of Foucault replaces the cogwheel by a rotating mirror. Because the mirror 
keeps rotating while the light travels to the distant mirror and back, the light is reflected 
from the rotating mirror at a different angle on its way out than it is on its way back. 
From this difference in angle, the known speed of rotation and the distance to the distant 
mirror the speed of light may be calculated.[95] 

Nowadays, using oscilloscopes with time resolutions of less than one nanosecond, the 
speed of light can be directly measured by timing the delay of a light pulse from a laser or 
an LED reflected from a mirror. This method is less precise (with errors of the order of 
1%) than other modern techniques, but it is sometimes used as a laboratory experiment in 
college physics classes.[96][97][98] 

Electromagnetic constants 

An option for deriving c that does not directly depend on a measurement of the 
propagation of electromagnetic waves is to use the relation between c and the vacuum 
permittivity ε0 and vacuum permeability μ0 established by Maxwell's theory: c2 = 1/(ε0μ0). 
The vacuum permittivity may be determined by measuring the capacitance and 
dimensions of a capacitor, whereas the value of the vacuum permeability is fixed at 
exactly 4π×10−7 H·m−1 through the definition of the ampere. Rosa and Dorsey used this 
method in 1907 to find a value of 299710±22 km/s.[99][100] 



Cavity resonance 

 
Electromagnetic standing waves in a cavity. 

Another way to measure the speed of light is to independently measure the frequency f 
and wavelength λ of an electromagnetic wave in vacuum. The value of c can then be 
found by using the relation c = fλ. One option is to measure the resonance frequency of a 
cavity resonator. If the dimensions of the resonance cavity are also known, these can be 
used to determine the wavelength of the wave. In 1946, Louis Essen and A.C. Gordon-
Smith established the frequency for a variety of normal modes of microwaves of a 
microwave cavity of precisely known dimensions. The dimensions were established to an 
accuracy of about ±0.8 μm using gauges calibrated by interferometry.[99] As the 
wavelength of the modes was known from the geometry of the cavity and from 
electromagnetic theory, knowledge of the associated frequencies enabled a calculation of 
the speed of light.[99][101] 

The Essen–Gordon-Smith result, 299792±9 km/s, was substantially more precise than 
those found by optical techniques.[99] By 1950, repeated measurements by Essen 
established a result of 299792.5±3.0 km/s.[102] 

A household demonstration of this technique is possible, using a microwave oven and 
food such as marshmallows or margarine: if the turntable is removed so that the food 
does not move, it will cook the fastest at the antinodes (the points at which the wave 
amplitude is the greatest), where it will begin to melt. The distance between two such 
spots is half the wavelength of the microwaves; by measuring this distance and 
multiplying the wavelength by the microwave frequency (usually displayed on the back 
of the oven, typically 2450 MHz), the value of c can be calculated, "often with less than 
5% error".[103][104] 

 

 

 



Interferometry 

 
An interferometric determination of length. Left: constructive interference; Right: 
destructive interference. 

Interferometry is another method to find the wavelength of electromagnetic radiation for 
determining the speed of light.[105] A coherent beam of light (e.g. from a laser), with a 
known frequency (f), is split to follow two paths and then recombined. By adjusting the 
path length while observing the interference pattern and carefully measuring the change 
in path length, the wavelength of the light (λ) can be determined. The speed of light is 
then calculated using the equation c = λf. 

Before the advent of laser technology, coherent radio sources were used for 
interferometry measurements of the speed of light.[106] However interferometric 
determination of wavelength becomes less precise with wavelength and the experiments 
were thus limited in precision by the long wavelength (~0.4 cm) of the radiowaves. The 
precision can be improved by using light with a shorter wavelength, but then it becomes 
difficult to directly measure the frequency of the light. One way around this problem is to 
start with a low frequency signal of which the frequency can be precisely measured, and 
from this signal progressively synthesize higher frequency signals whose frequency can 
then be linked to the original signal. A laser can then be locked to the frequency, and its 
wavelength can be determined using interferometry.[107] This technique was due to a 
group at the National Bureau of Standards (NBS) (which later became NIST). They used 
it in 1972 to measure the speed of light in vacuum with a fractional uncertainty of 
3.5×10−9.[107][108] 

History 

History of measurements of c (in km/s) 

<1638 Galileo, covered 
lanterns inconclusive[Note 8] 

<1667 
Accademia del 
Cimento, covered 
lanterns 

inconclusive[Note 9] 



1675 Rømer and Huygens, 
moons of Jupiter 220000[85][113] 

1729 James Bradley, 
aberration of light 301000[94] 

1849 Hippolyte Fizeau, 
toothed wheel 315000[94] 

1862 Léon Foucault, 
rotating mirror 298000±500[94] 

1907 Rosa and Dorsey, 
EM constants 299710±30[99][100] 

1926 Albert A. Michelson, 
rotating mirror 299796±4[114] 

1950 
Essen and Gordon-
Smith, 
cavity resonator 

299792.5±3.0[102] 

1958 K.D. Froome, 
radio interferometry 299792.50±0.10[106] 

1972 Evenson et al., 
laser interferometry 299792.4562±0.0011[108]

1983 17th CGPM, 
definition of the metre 299792.458 (exact)[83] 

Until the early modern period, it was not known whether light travelled instantaneously 
or at a very fast finite speed. The first extant recorded examination of this subject was in 
ancient Greece. The ancient Greeks, Muslim scholars, and classical European scientists 
long debated this until Rømer provided the first calculation of the speed of light. 
Einstein's Theory of Special Relativity concluded that the speed of light is constant 
regardless of one's frame of reference. Since then, scientists have provided increasingly 
accurate measurements. 

Early history 

Empedocles (c. 490–430 BC) was the first to claim that light has a finite speed.[115] He 
maintained that light was something in motion, and therefore must take some time to 
travel. Aristotle argued, to the contrary, that "light is due to the presence of something, 
but it is not a movement".[116] Euclid and Ptolemy advanced Empedocles' emission theory 
of vision, where light is emitted from the eye, thus enabling sight. Based on that theory, 
Heron of Alexandria argued that the speed of light must be infinite because distant 
objects such as stars appear immediately upon opening the eyes. Sayana had made 
commentary statements of measurement of speed of light as mentioned in Hindu Vedas. 



Early Islamic philosophers initially agreed with the Aristotelian view that light had no 
speed of travel. In 1021, Alhazen (Ibn al-Haytham) published the Book of Optics, in 
which he presented a series of arguments dismissing the emission theory of vision in 
favour of the now accepted intromission theory, in which light moves from an object into 
the eye.[117] This led Alhazen to propose that light must have a finite speed,[116][118][119] 
and that the speed of light is variable, decreasing in denser bodies.[119][120] He argued that 
light is substantial matter, the propagation of which requires time, even if this is hidden 
from our senses.[121] Also in the 11th century, Abū Rayhān al-Bīrūnī agreed that light has 
a finite speed, and observed that the speed of light is much faster than the speed of 
sound.[122] 

In the 13th century, Roger Bacon argued that the speed of light in air was not infinite, 
using philosophical arguments backed by the writing of Alhazen and Aristotle.[123][124] In 
the 1270s, Witelo considered the possibility of light travelling at infinite speed in vacuum, 
but slowing down in denser bodies.[125] 

In the early 17th century, Johannes Kepler believed that the speed of light was infinite, 
since empty space presents no obstacle to it. René Descartes argued that if the speed of 
light were to be finite, the Sun, Earth, and Moon would be noticeably out of alignment 
during a lunar eclipse. Since such misalignment had not been observed, Descartes 
concluded the speed of light was infinite. Descartes speculated that if the speed of light 
were found to be finite, his whole system of philosophy might be demolished.[116] In 
Descartes' derivation of Snell's law, he assumed that even though the speed of light was 
instantaneous, the more dense the medium, the faster was light's speed.[126] Pierre de 
Fermat derived Snell's law using the opposing assumption, the more dense the medium 
the slower light traveled. Fermat also argued in support of a finite speed of light.[127] 

First measurement attempts 

In 1629, Isaac Beeckman proposed an experiment in which a person observes the flash of 
a cannon reflecting off a mirror about one mile (1.6 km) away. In 1638, Galileo Galilei 
proposed an experiment, with an apparent claim to having performed it some years earlier, 
to measure the speed of light by observing the delay between uncovering a lantern and its 
perception some distance away. He was unable to distinguish whether light travel was 
instantaneous or not, but concluded that if it were not, it must nevertheless be 
extraordinarily rapid.[110][109] In 1667, the Accademia del Cimento of Florence reported 
that it had performed Galileo's experiment, with the lanterns separated by about one mile, 
but no delay was observed. The actual delay in this experiment would have been about 11 
microseconds. 



 
Rømer's observations of the occultations of Io from Earth 

The first quantitative estimate of the speed of light was made in 1676 by Rømer (see 
Rømer's determination of the speed of light).[84][85] From the observation that the periods 
of Jupiter's innermost moon Io appeared to be shorter when the Earth was approaching 
Jupiter than when receding from it, he concluded that light travels at a finite speed, and 
estimated that it takes light 22 minutes to cross the diameter of Earth's orbit. Christiaan 
Huygens combined this estimate with an estimate for the diameter of the Earth's orbit to 
obtain an estimate of speed of light of 220000 km/s, 26% lower than the actual value.[113] 

In his 1704 book Opticks, Isaac Newton reported Rømer's calculations of the finite speed 
of light and gave a value of "seven or eight minutes" for the time taken for light to travel 
from the Sun to the Earth (the modern value is 8 minutes 19 seconds).[128] Newton 
queried whether Rømer's eclipse shadows were coloured; hearing that they were not, he 
concluded the different colours travelled at the same speed. In 1729, James Bradley 
discovered stellar aberration.[86] From this effect he determined that light must travel 
10,210 times faster than the Earth in its orbit (the modern figure is 10,066 times faster) or, 
equivalently, that it would take light 8 minutes 12 seconds to travel from the Sun to the 
Earth.[86] 

Connections with electromagnetism 

See also: History of electromagnetic theory and History of special relativity 

In the 19th century Hippolyte Fizeau developed a method to determine the speed of light 
based on time-of-flight measurements on Earth and reported a value of 315000 km/s. His 
method was improved upon by Léon Foucault who obtained a value of 298000 km/s in 
1862.[94] In the year 1856, Wilhelm Eduard Weber and Rudolf Kohlrausch measured the 



ratio of the electromagnetic and electrostatic units of charge, 1/√ε0μ0, by discharging a 
Leyden jar, and found that its numerical value was very close to the speed of light as 
measured directly by Fizeau. The following year Gustav Kirchhoff calculated that an 
electric signal in a resistanceless wire travels along the wire at this speed.[129] In the early 
1860s, Maxwell showed that, according to the theory of electromagnetism he was 
working on, electromagnetic waves propagate in empty space[130][131][132] at a speed equal 
to the above Weber/Kohrausch ratio, and drawing attention to the numerical proximity of 
this value to the speed of light as measured by Fizeau, he proposed that light is in fact an 
electromagnetic wave.[133] 

"Luminiferous aether" 

 
Hendrik Lorentz (right) with Albert Einstein. 

It was thought at the time that empty space was filled with a background medium called 
the luminiferous aether in which the electromagnetic field existed. Some physicists 
thought that this aether acted as a preferred frame of reference for the propagation of light 
and therefore it should be possible to measure the motion of the Earth with respect to this 
medium, by measuring the isotropy of the speed of light. Beginning in the 1880s several 
experiments were performed to try to detect this motion, the most famous of which is the 
experiment performed by Albert A. Michelson and Edward W. Morley in 1887.[134] The 
detected motion was always less than the observational error. Modern experiments 
indicate that the two-way speed of light is isotropic (the same in every direction) to 
within 6 nanometres per second.[135] Because of this experiment Hendrik Lorentz 
proposed that the motion of the apparatus through the aether may cause the apparatus to 
contract along its length in the direction of motion, and he further assumed, that the time 
variable for moving systems must also be changed accordingly ("local time"), which led 
to the formulation of the Lorentz transformation. Based on Lorentz's aether theory, Henri 
Poincaré (1900) showed that this local time (to first order in v/c) is indicated by clocks 
moving in the aether, which are synchronized under the assumption of constant light 
speed. In 1904, he speculated that the speed of light could be a limiting velocity in 
dynamics, provided that the assumptions of Lorentz's theory are all confirmed. In 1905, 
Poincaré brought Lorentz's aether theory into full observational agreement with the 
principle of relativity.[136][137] 



Special relativity 

In 1905 Einstein postulated from the outset that the speed of light in vacuum, measured 
by a non-accelerating observer, is independent of the motion of the source or observer. 
Using this and the principle of relativity as a basis he derived the special theory of 
relativity, in which the speed of light in vacuum c featured as a fundamental constant, 
also appearing in contexts unrelated to light. This made the concept of the stationary 
aether (to which Lorentz and Poincaré still adhered) useless and revolutionized the 
concepts of space and time.[138][139] 

Increased accuracy of c and redefinition of the metre and second 

See also: History of the metre 

In the second half of the 20th century much progress was made in increasing the accuracy 
of measurements of the speed of light, first by cavity resonance techniques and later by 
laser interferometer techniques. These were aided by new, more precise, definitions of 
the metre and second. In 1950, Louis Essen determined the speed as 299792.5±1 km/s, 
using cavity resonance. This value was adopted by the 12th General Assembly of the 
Radio-Scientific Union in 1957. In 1960, the metre was redefined in terms of the 
wavelength of a particular spectral line of krypton-86, and, in 1967, the second was 
redefined in terms of the hyperfine transition frequency of the ground state of caesium-
133. 

In 1972, using the laser interferometer method and the new definitions, a group at NBS in 
Boulder, Colorado determined the speed of light in vacuum to be 
c = 299792456.2±1.1 m/s. This was 100 times less uncertain than the previously accepted 
value. The remaining uncertainty was mainly related to the definition of the metre.[Note 

10][108] As similar experiments found comparable results for c, the 15th Conférence 
Générale des Poids et Mesures (CGPM) in 1975 recommended using the value 
299792458 m/s for the speed of light.[142] 

Defining the speed of light as an explicit constant 

In 1983 the 17th CGPM found that wavelengths from frequency measurements and a 
given value for the speed of light are more reproducible than the previous standard. They 
kept the 1967 definition of second, so the caesium hyperfine frequency would now 
determine both the second and the metre. To do this, they redefined the metre as: "The 
metre is the length of the path travelled by light in vacuum during a time interval of 
1/299792458 of a second."[83] As a result of this definition, the value of the speed of light 
in vacuum is exactly 299792458 m/s[143][144] and has become a defined constant in the SI 
system of units.[11] Improved experimental techniques that prior to 1983 would have 
measured the speed of light, no longer affect the known value of the speed of light in SI 
units, but instead allow a more precise realization of the metre by more accurately 
measuring the wavelength of Krypton-86 and other light sources.[145][146] 



In 2011, the CGPM stated its intention to redefine all seven SI base units using what it 
calls "the explicit-constant formulation", where each "unit is defined indirectly by 
specifying explicitly an exact value for a well-recognized fundamental constant", as was 
done for the speed of light. It proposed a new, but completely equivalent, wording of the 
metre's definition: "The metre, symbol m, is the unit of length; its magnitude is set by 
fixing the numerical value of the speed of light in vacuum to be equal to exactly 
299792458 when it is expressed in the SI unit m s−1."[147] This is one of the proposed 
changes to be incorporated in the next revision of the SI also termed the New SI. 

 


