Chapter 10.6

Smooth & Cardiac Muscles

Cardiac muscle Smooth muscle
Smooth Muscle

- Some smooth muscles lack nerve supply

- Other smooth muscle cells receive autonomic fibers
 - Note: not somatic motor fibers as in skeletal muscle

- Capable of mitosis and hyperplasia

- Injured smooth muscle regenerates well
Smooth Muscle

- composed of myocytes that have a **fusiform shape**

- **one nucleus**, located near the middle of the cell

- **no visible striations**
 - reason for the name ‘smooth muscle’
 - thick and thin filaments are present, but not aligned with each other

- z discs are absent and replaced by **dense bodies**
 - well ordered array of protein masses in cytoplasm
 - **protein plaques** on the inner face of the plasma membrane

- cytoplasm contains extensive cytoskeleton of intermediate filament
 - attach to the membrane plaques and dense bodies
 - provide mechanical linkages between the thin myofilaments and the plasma membrane

- sarcoplasmic reticulum is scanty and there are no T tubules

- Ca\(^2+\) needed for muscle contraction comes from the ECF by way of Ca\(^2+\) channels in the sarcolemma
Stimulation of Smooth Muscle

- smooth muscle is **involuntary**

- can may contract without nervous stimulation
 - can contract in response to chemical stimuli
 - hormones, carbon dioxide, low pH, and oxygen deficiency
 - in response to stretch
 - single unit smooth muscle in stomach and intestines has **pacemaker cells** that set off waves of contraction throughout the entire layer of muscle

- most smooth muscle is innervated by **autonomic nerve fibers**
 - can trigger and modify contractions
 - **stimulate smooth muscle with either acetylcholine or norepinephrine**
 - can have **contrasting effects**
 - relax the smooth muscle of arteries
 - contract smooth muscles of the bronchioles
2 Types of Smooth Muscle – 1 of 3

- **multiunit smooth muscle**
 - occurs in some of the largest arteries and pulmonary air passages, in piloerector muscles of hair follicle, and in the iris of the eye
 - ANS (autonomic nervous system) innervation similar to skeletal muscle
 - terminal branches of a nerve fiber synapse with individual myocytes and form a motor unit
 - each motor unit contracts independently of the others
2 Types of Smooth Muscle – 2 of 3

- single-unit smooth muscle
 - more widespread
 - occurs in most blood vessels, in the digestive, respiratory, urinary, and reproductive tracts
 - also called visceral muscle
 - often in two layers
 - inner circular
 - outer longitudinal
 - myocytes of this cell type are electrically coupled to each other by gap junctions
 - they directly stimulate each other and a large number of cells contract as a single unit

(b) Single-unit smooth muscle
2 Types of Smooth Muscle – 3 of 3

- in single unit smooth, each autonomic nerve fibers has up to 20,000 beadlike swelling called varicosities
 - each contains synaptic vesicles and a few mitochondria
 - nerve fiber passes amid several myocytes and stimulates all of them at once when it releases its neurotransmitter

- no motor end plates, but receptors scattered throughout the surface

- diffuse junctions – no one-to-one relationship between nerve fiber and myocyte
Stimulation of Smooth Muscle

- Autonomic nerve fiber
- Varicosities
- Mitochondrion
- Synaptic vesicle
- Single-unit smooth muscle
Layers of Visceral Muscle

Mucosa:
- Epithelium
- Lamina propria
- Muscularis mucosae

Muscularis externa:
- Circular layer
- Longitudinal layer
Smooth Muscle Contraction and Relaxation

- contraction is triggered by Ca\(^{+2}\), energized by ATP, and achieved by sliding thin past thick filaments

- contraction begins in response to Ca\(^{+2}\) that enters the cell from ECF, a little internally from sarcoplasmic reticulum
 - Ca\(^{+2}\) channels open to allow Ca\(^{+2}\) to enter cell
 - voltage, ligand, and mechanically-gated (stretching)

- calcium binds to calmodulin on thick filaments
 - activates myosin light-chain kinase – adds phosphate to regulatory protein on myosin head
 - myosin ATPase
 - hydrolyzing ATP
 - enables myosin *similar power and recovery strokes like skeletal muscle*

 - thick filaments pull on thin ones - thin ones pull on dense bodies and membrane plaques
 - force is transferred to plasma membrane and entire cell shortens
 - puckers and twists like someone wringing out a wet towel
Contraction and Relaxation

- very slow in comparison to skeletal muscle
 - latent period in skeletal 2 msec, smooth muscle 50 - 100 msec
 - tension peaks at about 500 msec (0.5 sec)
 - declines over a period of 1 – 2 seconds
 - slows myosin ATPase enzyme and slow pumps that remove Ca\(^{+2}\)
 - Ca\(^{+2}\) binds to calmodulin instead of troponin // activates kinases and ATPases that hydrolyze ATP
 - smooth muscle makes most of its ATP aerobically
Contraction and Relaxation

• smooth muscle resistant to fatigue
 – latch-bridge mechanism - heads of myosin molecules do not detach from actin immediately
 – do not consume more ATP immediately
 – maintains tetanus tonic contraction (smooth muscle tone)

• arteries – vasomotor tone
• intestinal tone
Contraction of Smooth Muscle

(a) Relaxed smooth muscle cells

(b) Contracted smooth muscle cells

- Plaque
- Intermediate filaments of cytoskeleton
- Actin filaments
- Dense body
- Myosin
Stretching Smooth Muscle

• **stretch** can open **mechanically-gated calcium** channels in the sarcolemma causing contraction

 – **peristalsis** – waves of contraction brought about by food distending the esophagus or feces distending the colon // propels contents along the organ

• **stress-relaxation response** (receptive relaxation)

 – helps **hollow organs gradually fill** (urinary bladder)

 – when stretched, tissue briefly contracts then relaxes – helps prevent emptying while filling
Contraction and Stretching

- smooth muscle contracts forcefully even when greatly stretched
 - allows hollow organs such as the stomach and bladder to fill and then expel their contents efficiently
 - smooth muscle can be anywhere from half to twice its resting length and still contract powerfully
 - skeletal muscle cannot contract forcefully if overstretched
Contraction and Stretching

• three reasons why

 – there are no z discs, so thick filaments cannot butt against them and stop contraction

 – since the thick and thin filaments are not arranged in orderly sarcomeres, stretching does not cause a situation where there is too little overlap for cross-bridges to form

 – the thick filaments of smooth muscle have myosin heads along their entire length, so cross-bridges can form anywhere

• plasticity – the ability to adjust its tension to the degree of stretch // a hollow organ such as the bladder can be greatly stretched yet not become flabby when it is empty
Cardiac Muscle
Cardiac Muscle

- limited to the heart where it functions to pump blood

- required properties of cardiac muscle
 - contraction with regular rhythm
 - muscle cells of each chamber must contract in unison
 - contractions must last long enough to expel blood
 - must work in sleep or wakefulness, without fail, and without conscious attention
 - must be highly resistant to fatigue
Cardiac Muscle

• characteristics of cardiac muscle cells
 – striated like skeletal muscle, but myocytes (cardiocytes) are
 shorter and thicker

 – each myocyte is joined to several others at the uneven, notched
 linkages – intercalated discs
 • appear as thick dark lines in stained tissue sections
 • electrical gap junctions allow each myocyte to directly stimulate
 its neighbors
 • mechanical junctions that keep the myocytes from pulling apart

 – sarcoplasmic reticulum less developed, but T tubules are larger
 and admit supplemental Ca^{2+} from the extracellular fluid

 – damaged cardiac muscle cells repair by fibrosis
 • a little mitosis observed following heart attacks
 • not in significant amounts to regenerate functional muscle
Cardiac Muscle

- can contract without need for nervous stimulation
 - contains a built-in pacemaker that rhythmically sets off a wave of electrical excitation
 - wave travels through the muscle and triggers contraction of heart chambers
 - autorhythmic – because of its ability to contract rhythmically and independently

- autonomic nervous system does send nerve fibers to the heart
 - can increase or decrease heart rate and contraction strength

- very slow twitches - does not exhibit quick twitches like skeletal muscle
 - maintains tension for about 200 to 250 msec
 - gives the heart time to expel blood

- uses aerobic respiration almost exclusively
 - rich in myoglobin and glycogen
 - has especially large mitochondria
 - 25% of volume of cardiac muscle cell
 - 2% of skeletal muscle cell with smaller mitochondria

- very adaptable with respect to fuel used

- very vulnerable to interruptions of oxygen supply

- highly fatigue resistant