
Chapter 16

Sense of Pain

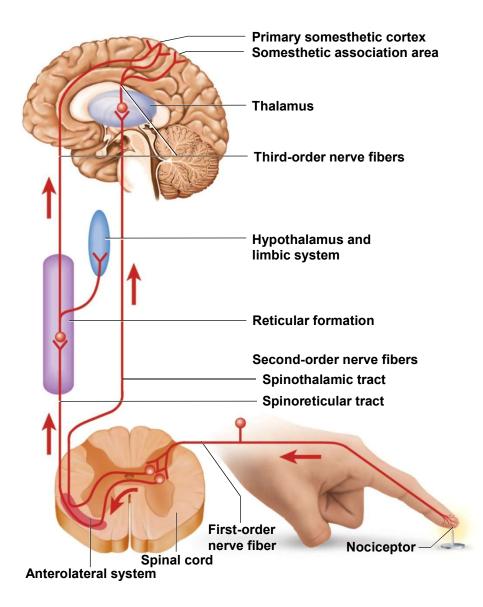
Pain

- Discomfort caused by tissue injury or noxious stimulation that typically leads to evasive action
 - important /// helps to protect us
 - lost of pain in diabetes mellitus = diabetic neuropathy
 - If you loose sense of pain then you can not detect tissue damage (e.g. Leprosy)
- Nociceptors = pain receptors
 - two types providing different pain sensations
 - fast pain (alpha) travels in myelinated fibers at 12 30 m/sec /// sharp, localized, stabbing pain perceived with injury
 - slow pain (delta) travels unmyelinated fibers at 0.5 2 m/sec /// longerlasting, dull, diffuse feeling
 - Both type in skin // damage skin first detect the alpha fibers followed by delta fibers

Pain

- **somatic pain** from skin, muscles and joints
- **visceral pain -** from the viscera stretch, chemical irritants or ischemia of viscera (poorly localized)

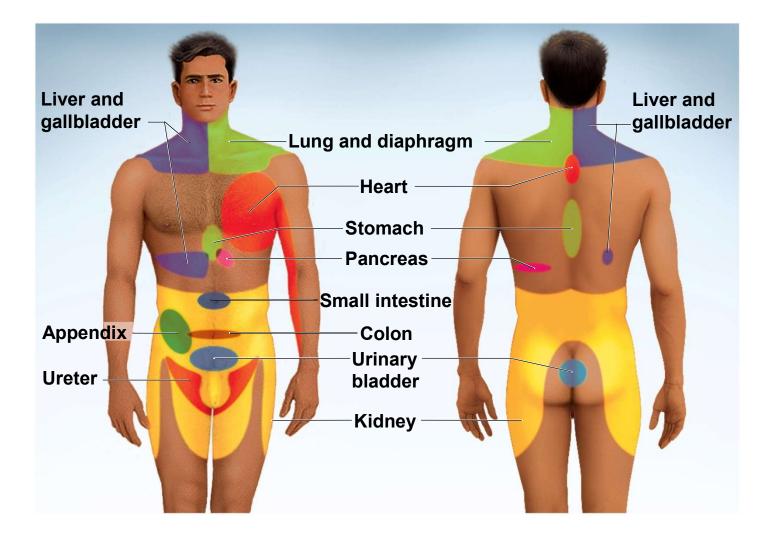
- injured tissues release chemicals that stimulate pain fibers
 - bradykinin most potent pain stimulus known
 - makes us aware of injury and activates cascade or reactions that promote healing
 - <u>histamine, prostaglandin & serotonin</u> also stimulate nociceptors


Projection Pathway for Pain

- Ascending and descending tracts (plus multiple sub-routes)
 - Neurons in pain ascending route to somatic sensory gyrus:
 - **first-order neuron** cell bodies in dorsal root ganglion of spinal nerves or cranial nerves V, VII, IX, and X
 - second-order neurons decussate and send fibers up spinothalamic tract (somatic pain) or through medulla to thalamus /// 2nd order gracile fasciculus carries visceral pain signals
 - third-order neurons from thalamus reach postcentral gyrus of cerebrum (somatic sensory gyrus)

Projection Pathway for Pain

- Pain signals travel by way of four ascending tracts:
 - spinothalamic tract most significant pain pathway /// carries most somatic pain signals
 - spinoreticular tract carries pain signals to reticular formation /// activate visceral, emotional and behavioral reactions to pain
 - gracile fasciculus carries signals to the thalamus for visceral pain -- lower extremities
 - cuniate fasiculus carries signals to the thalamus for visceral pain -- upper extremities


Pain Signal Destinations

Referred Pain

- Pain in viscera often mistakenly thought to come from the skin or other superficial site
 - results from convergence of neural pathways in CNS
 - brain "assumes" visceral pain is coming from skin
 /// brain can not distinguish source
 - heart pain felt in shoulder or arm because both send pain input to spinal cord segments T1 to T5

Referred Pain

CNS Modulation of Pain

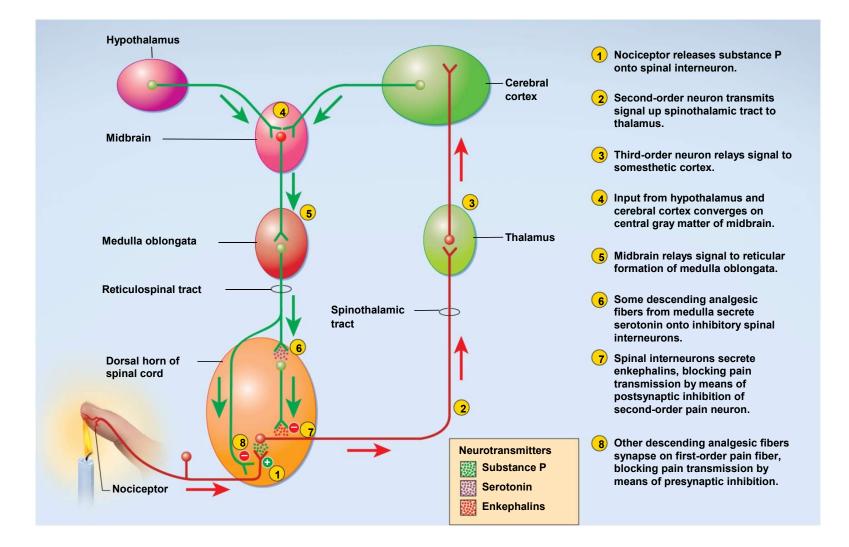
- analgesic (pain-relieving) mechanisms of CNS /// just beginning to be understood
 - tied to receptor sites for opium, morphine & heroin located in the brain
 - enkephalins two analgesic oligopeptides with 200 times the potency of morphine
 - endorphins
 - dynorphins
 - (larger analgesic neuropeptides discovered later)

CNS Modulation of Pain

- endogenous opioids /// internally produced opium-like substances
 - enkephalins, endorphins, and dynorphins
 - secreted by the CNS, pituitary gland, digestive tract, and other organs
- neuromodulators
 - enkephalins can block the transmission of pain signals
 - produce feelings of pleasure and euphoria

Spinal Gating

- Stops pain signals at the posterior horn of the spinal cord
 - descending analgesic fibers arise in brain stem
 - travel down the spinal cord in the reticulospinal tract
 - block pain signals from traveling up the cord to the brain


Spinal Gating

- Normal pain pathway (ascending)
 - **nociceptor** stimulates second-order nerve fiber
 - **substance P** is neurotransmitter at this synapse
 - second-order fiber transmits signal up the spinothalamic tract to the thalamus
 - thalamus relays the signals through third order neurons to the cerebral cortex where one becomes conscious of the pain

Spinal Gating: Pathway for Pain Blocking

- signals from the hypothalamus and cerebral cortex feed into the central gray matter of the midbrain // allows both autonomic and conscious influences on pain perception
- midbrain relays signals to certain nuclei in the reticular formation of the medulla oblongata
- medulla issues descending, serotonin-secreting analgesic fibers to the spinal cord // terminate in the posterior horn at all levels of the spinal cord
- in posterior horn, descending analgesic fibers synapse on short spinal interneurons (i.e. local circuit neurons)
- the interneurons synapse on the second-order pain fiber // secrete enkephalins to inhibit the second-order neuron
- some fibers from the medulla also exert presynaptic inhibition by synapsing on the axons of nociceptors and blocking the release of substance P

Spinal Gating of Pain Signals

Spinal Gating

- Rubbing or massaging injury
 - another pathway of spinal gating
 - pain-inhibiting neurons of the posterior horn receive input from mechanoreceptors in the skin and deeper tissues
 - rubbing stimulates mechanoreceptors which stimulates spinal interneurons to secrete enkephalins that inhibit second-order pain neurons