Chapter 23

Neural and Voluntary Control of Breathing
Neural Control of Breathing

• This topic is still “unsettled” science // exact mechanism for setting the rhythm of respiration remains unknown

• Currently, we understand there are three neural circuits (nuclei) within the brain stem which influence breathing
 – Dorsal respiratory group
 – Ventral respiratory group
 – Pontine respiratory group

• Higher brain centers may also influence these nuclei in the brain stem to modify breathing // cerebral cortex, limbic system, hypothalamus.
Neural Control of Breathing

• Medullary respiratory center located in the medulla oblongata // two nuclei form the MRC

 – Dorsal respiratory group – quiet during normal breathing / location for two nuclei that send impulses to diaphragm via phrenic nerves and external intercostal muscles via the intercostal nerves

 – Ventral respiratory group – location of the pre-Botzinger complex // generates the rhythm of breathing by sending action potentials to the DRG’s inspiratory neurons (2 seconds)
Neural Control of Breathing

• Pontine respiratory group
 – Located in the pons
 – Send signals to the DRG / modify breathing
 – Changes rate and force of both inspiration and expiration
 – Modify breathing for exercising, speaking, or sleeping, etc.
Neural Control of Breathing

• Breathing depends on repetitive stimuli from brain to skeletal muscles of thorax (diaphragm and external intercostals)
 – neurons in medulla oblongata and pons control unconscious breathing
 – inspiratory neurons (DRG) /// fire during inspiration (2 sec)
 – expiratory neurons (DRG) /// fire to inhibit inspiratory neurons during eupnea (3 sec)
 – Respiratory cycle = 12 breaths per minute
 – voluntary control provided by motor cortex // you can hold your breath!
 – Other factors // in order to maintain homeostasis // central chemoreceptors, peripheral chemoreceptors, proprioceptor lung stretch receptors (Hering-Breuer reflex), irritant reflex, limbic system, temperature, pain, stretching the anal spincter, blood pressure (minor)
Quiet Breathing / Normal Quiet Breathing (Know This)

Dorsal respiratory group (DRG)

Active

2 seconds

Diaphragm contracts and external intercostal muscles contract during their most active phase

Normal quiet inhalation

Inactive

3 seconds

Diaphragm relaxes and external intercostal muscles become less active and relax, followed by elastic recoil of lungs

Normal quiet exhalation
Forceful Breathing / Breathing During Exercise

1. **Dorsal respiratory group (DRG):**
 - Diaphragm contracts and external intercostal muscles contract during their most active stage.

2. **Ventral respiratory group (VRG) (forceful inhalation neurons):**
 - Accessory muscles of inhalation (sternocleidomastoid, scalene, and pectoralis minor muscles) contract.
 - Forceful inhalation

3. **Ventral respiratory group (VRG) (forceful exhalation neurons):**
 - Accessory muscles of exhalation (internal intercostal, external oblique, internal oblique, transversus abdominis, and rectus abdominis muscles) contract.
 - Forceful exhalation
Brainstem Respiratory Centers

- Respiratory nuclei in pons
 - pons respiratory nuclei – signals to dorsal respiratory group
 - pontine respiratory group (PRG)
 - modifies rhythm by sending signals to both the VRG and DRG
 - adapts breathing to special circumstances such as sleep, exercise, vocalization, and emotional responses
 - Also receives Input from limbic system and cerebrum
Respiratory Control Centers (Know This)
Respiratory Control Centers

- Cerebral cortex
- Limbic system
- Hypothalamus

Higher Centers

- Pneumotaxic center
- Apneustic center
- CSF CHEMORECEPTORS
- Medulla oblongata

Chemoreceptors and baroreceptors of carotid and aortic sinuses

- Stretch receptors of lungs
- Dorsal respiratory group (DRG)
- Ventral respiratory group (VRG)

KEY:
- Red = Stimulation
- Blue = Inhibition

Motor neurons controlling diaphragm

Diaphragm
Phrenic nerve

Motor neurons controlling other respiratory muscle
Respiratory Control Centers
Central and Peripheral Input to Respiratory Centers

- **central chemoreceptors**
 - brainstem neurons that respond to changes in pH of cerebrospinal fluid
 - pH of cerebrospinal fluid reflects the CO$_2$ level in the blood
 - by regulating respiration to maintain stable pH
 respiratory center also ensures stable CO$_2$ level in the blood

- **peripheral chemoreceptors**
 - located in the carotid and aortic bodies of the large arteries above the heart
 - respond to the O$_2$ and CO$_2$ content and the pH of blood
Central and Peripheral Input to Respiratory Centers (Know This)

- **Stretch receptors**
 - found in the smooth muscles of bronchi and bronchioles, and in the visceral pleura
 - respond to inflation of the lungs
 - **inflation (Hering-Breuer) reflex**
 - triggered by excessive inflation
 - protective reflex
 - inhibits inspiratory neurons to stop inspiration
Irritant receptors

- nerve endings amid the epithelial cells of the airway

- respond to smoke, dust, pollen, chemical fumes, cold air, and excess mucus

- trigger protective reflexes //
 bronchoconstriction, shallower breathing, breath-holding (apnea), or coughing
Central and Peripheral Input to Respiratory Centers (cont.)

- Hyperventilation
 - anxiety triggered state in which breathing is so rapid that it expels CO$_2$ from the body faster than it is produced
 - CO$_2$ levels drop
 - pH rises causing the cerebral arteries to constrict reducing cerebral perfusion which may cause dizziness or fainting
 - can be brought under control by having the person re-breathe the expired CO$_2$ from a paper bag
Voluntary Control of Breathing

- originates in the motor cortex of frontal lobe of cerebrum
 - sends impulses down corticospinal tracts to respiratory neurons in spinal cord
 - bypassing brainstem
- limits to voluntary control
 - breaking point // when CO\textsubscript{2} levels rise to a point when automatic controls override one’s will
Threshold stimulations disrupt homeostasis by increasing the arterial blood P_{CO_2} (or decreasing pH or P_{O_2}).

CONTROLLED CONDITION
Arterial blood P_{CO_2} (or decreasing pH or P_{O_2})

RECEPTORS
- Central chemoreceptors in medulla
- Peripheral chemoreceptors in aortic and carotid bodies

CONTROL CENTER
Dorsal respiratory group in medulla oblongata

EFFECTORS
- Muscles of inhalation and exhalation contract more forcefully and more frequently (hyperventilation)

RESPONSE
- Decrease in arterial blood P_{CO_2}
- Increase in pH, and increase in P_{O_2}

Return to homeostasis when response brings arterial blood P_{CO_2}, pH, and P_{O_2} back to normal.
Hypoxic Drive

Chronic Elevation of CO2 Levels

- Medullary Chemoreceptors Become Insensitive to High PCO2
 - PCO2 Increases
 - PO2 Decreases
 - No Increase In Respiration
 - Marked Decrease In O2 Levels
 - Very Low PO2 Stimulates Peripheral Chemoreceptors

- Inspiratory Muscles Stimulated

- Increased Respiration
- Remove CO2 / Take in O2

- PO2 Increases
- PCO2 Decreases

- Respiration Slows
Fourth week

Pharynx
RESPIRATORY DIVERTICULUM
TRACHEAL BUD
Esophagus

Pharynx
Trachea
BRONCHIAL BUDS
Esophagus
Fifth week:
- Trachea
- Right primary bronchus
- Right secondary bronchi

Sixth week:
- Left primary bronchus
- Left secondary bronchi
- Right tertiary bronchi
- Left tertiary bronchi